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Introduction 
 

Damage tolerance analyses (DTA) of structures are often challenging and time consuming 
endeavors because of the types of data required and the sophistication of the techniques 
necessary to obtain it.  Examples of required data include stress states in parts so complex 
that finite element (FE) analyses are necessary to obtain them.  The fatigue crack growth 
behavior of materials may require lengthy experimental characterization. 

The high demands of time and expertise can easily exceed the resources available.  In such 
cases, it becomes necessary to prioritize the efforts devoted to obtaining various pieces of 
information according to each one’s level of importance to the final analysis.  Critical 
factors should receive large resources to enable their accurate determination.  On the other 
hand, quick approximations may prove satisfactory for factors of secondary importance.  
But the question arises, “Which factors are critical, and which are secondary?”  This 
example problem aims to address that question. 

 

Mathematical Background:  Sensitivity Analysis 
Before one can determine what factors are and are not important in a DTA, one must 
choose a method of quantifying the qualitative term, important.  Here, we have chosen to 
use a sensitivity analysis approach.  It relates the percentage change in a system’s input to 
the resulting percentage change in the system’s output, the ratio of the two being the 
sensitivity parameter.  As an example, consider the following equation 

nAxy =  (1) 

where x is the input, y is the output, and A and n are constants.  The sensitivity of y with 
respect to x is therefore the ratio of the percentage change in y resulting from a given 
percentage change in x.  The percentage change in the output y would be expressed as 
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and likewise for the input variable x.  Defining the sensitivity parameter, Sy/x, as the ratio of 
the percentage changes gives 
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and taking the limit as  gives the analytical definition of Sy/x. 0x →∆
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Applying Eq. (4) to Eq. (1) gives the result 
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 nS x/y =  (5) 

which states that the percentage change in y is simply n times the percentage change in x 
regardless of the values of A and x.  So if n=3 and x is increased by 10%, then y would 
increase 30%.  This is a very useful result because of its simplicity.  It will be used 
extensively in the following applications of damage tolerance analysis.  Of course many 
equations exist that are not in the form of Eq. (1).  In these cases, Eq. (4) must be applied 
on an individual basis. 

 

Applications to Damage Tolerance Analysis 
Stress Intensity Factor 
One of the most fundamental steps of any DTA is calculation of the stress intensity factor, 
K, using Eq. (6) 

aK πβσ=  (6) 

where β is the geometry factor, σ is stress, and a is crack length.  The sensitivity of K to the 
various parameters is then 

1S /K =β  1S /K =σ  2
1a/KS =  (7) 

indicating that accurate values of β and σ are equally important to the calculation of K, and 
that the sensitivity to crack length is less. 

Crack Growth Rates 

The situation becomes more interesting when crack growth rates are analyzed.  A Paris 
Law dependence on ∆K will be assumed as follows 

2
n

)a()( C)K( C
dN
da nn πσ∆β=∆=  (8) 

where N is the number of cycles, and C and n are Paris Law constants.  Note that C and n 
are material properties with associated measurement uncertainties.  Since the sensitivity of 
crack growth rate to the β-factor and stress is equal to n in both cases, it is worth reviewing 
typical values.  Figure MERC-3.1 shows crack growth data for Al 7075-T6.  The Paris Law 
forms a straight line on the logarithmic graph with n equal to the slope and C equal to 
da/dN at ∆K=1.  It is seen that in this case, n=3.6.  (3 ≤ n ≤ for most materials)  This value 
has critical implications on the accuracy of crack growth predictions.  It means that a 10% 
error in the estimate of the β-factor results in a 36% error in the prediction of da/dN.  The 
same sensitivity applies to the stress as well.  It is this high sensitivity of da/dN to ∆K, 
reflected in the value of n, which presents a major challenge to the accurate prediction of 
crack growth rates.   
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What of the sensitivities to the Paris Law constants?  The sensitivity to C is unity since that 
is its exponent in Eq. (8).  It is necessary to apply Eq. (4) to Eq. (8) to determine the 
sensitivity to the exponent, n.  Doing so gives  

)Kln( nS ndN
da ∆=  (9) 

Since ln(∆K) is usually greater than one in engineering analyses, it is clear that the 
sensitivity of predicted crack growth rates to the accurate determination of the slope of the 
da/dN–∆K data in Figure MERC-3.1 is even greater than to β-factors and stresses.  In 
summary, the results are as follows 
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da =β  nS
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C = 2.5*10-9

n = 3.6 

Figure MERC-3.1. da/dN – DK data for 7075-T6 Al and Paris Law 
curve fit. 
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Service Life – Cycles to Failure 

The quantity of primary interest in a DTA is the service life of a component, measured in 
cycles to failure, NLife.  An analytical expression for NLife can be obtained if one neglects 
crack retardation and assumes that the β-factor and stress range are both constant 
throughout a component’s life.  Integrating Eq. (8) and solving for NLife gives 
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where ao is initial crack length, and af is final crack length at which point failure takes 
place.  From Eq. (11), it is seen that the sensitivity of NLife to certain parameters is simply 
negative of the crack growth rate’s sensitivity to them. 

1S CNLife
−=  nS

LifeN −=β nS
LifeN −=σ (12) 

So a 10% increase in the β-factor or stress would produce a 36% decrease in service life 
assuming n=3.6.  Eq. (4) must be applied to Eq. (11) to determine the sensitivity of NLife to 
initial and final crack lengths.  Doing so gives 
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and 

2
nfLife 1

f

o

2
n

aN

a
a

1

1
S

−









−

−
=  

(14) 

 

Eqs.(13) and (14) are plotted versus ao/af in Figure MERC-3.2 for three values of n.  The 
sensitivity to initial crack length depends on both n and af, but is approximately –1 for 
common values of these factors.  So a 10% increase in initial crack length results in a 10% 
reduction in predicted fatigue life.  On the other hand, predicted life is relatively insensitive 
to final crack length, showing only ~10% sensitivity.  So a 10% increase in af produces 
only ~1% increase in predicted life.  Since af is usually chosen to equal the critical crack 
length, acrit, this demonstrates that variations in acrit have a small impact on NLife estimates. 

 

MERC-3.5 



Figure MERC-3.2. Sensitivity of NLife to initial and final crack 
lengths for three values of the Paris exponent, n.  Paris law
material behavior and constant β-factor and stress range are 
assumed. 

-

-

0 

0.

0 0. 0. 0.
ao / af , Ratio of Initial to Final Crack 

-

n = 
3.0 
n = 

n = 
3.0 
n = 

o
Li

fe
a

NS
o

Li
fe

a
NS

o
Li

fe
a

NS
o

Li
fe

a
NS

f
Li

fe
a

NS
f

Li
fe

a
NS

 
Variable β-Factors – Numerical Example 

The final example demonstrates that fatigue life sensitivity to a β-factor can depend on its 
relative value, with lower values being more critical than larger values.  This analysis will 
be performed numerically rather than analytically because of the complexities of 
integrating non-constant β-factors.  The horizontal leg of an aircraft longeron will be 
chosen for this example.  A finite element model of it is shown in Figure MERC-3.3.  
The part is subjected to tension, bending, and fastener forces.  The crack begins at the 
fastener hole and proceeds to the part edge as shown in the Figure.  The β-factor is 
plotted in Figure MERC-3.4.   
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Crack 
 Path 

Figure MERC-3.3. Finite element model of horizontal leg of longeron.  
Crack originates at fastener hole and follows path shown.  
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Figure MERC-3.4. β-factor versus crack length for crack starting at 
fastener hole in Figure MERC-3.3 and proceeding across part.  

Figure MERC-3.4 shows that the β-factor is approximately three at short crack lengths 
because of the stress concentration at the fastener hole.  The β-factor then decreases to 
approximately one with increasing crack length and then increases again as the crack 
approaches the free surface.  The predicted life using the β-factor in Figure MERC-3.4 
will be compared to two others having the following modifications. 

Case 1. Large values of the β-factor increased.  β values ≥3 were increased by 10%, β 
values ≤1 were not changed, intermediate values were scaled proportionately, 
i.e., β values = 2 were increased by 5%. 
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Case 2. Small values of the β-factor increased.  β values ≤1 were increased by 10%, β 
values ≥3 were not changed, intermediate values were scaled proportionately, 
i.e., β values = 2 were increased by 5%. 

AFGROW was used to predict the fatigue life of the part using the three different β-
factor cases.  Other inputs include: (1) ∆σ=10ksi with R=0, (2) a0=0.05 in. and af=1.25 
in., (3) material da/dN–∆K data taken from Figure MERC-3.1.  Results are shown in 
Figure MERC-3.5. 
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Figure MERC-3.5. Effects of β-factor variations on predicted
fatigue life.  Fatigue life is more sensitive to variations in
small β-values than larger ones. 

 
The 10% increase in small β-values produced a 25% decrease in predicted fatigue life, 
yielding a sensitivity of -2.5.  The sensitivity to the increase in large β-values is -0.4.  
This demonstrates that fatigue life can be more sensitive to variations in small β-values 
than larger ones.  It can therefore be more important to accurately determine small β-
factor values than larger ones.  This is a potentially counter-intuitive result since most 
analyses focus on large parameter values rather than small ones.  This situation exists 
because cracks spend the majority of their life growing slowly at lengths with 
corresponding small β-factors. 

Summary 
A sensitivity analysis of factors affecting fatigue life predictions has been presented.  It 
was demonstrated that certain factors have a large impact on predicted life, while others 
do not.  Important factors include stress and β-factors.  In most cases, a 10% increase in 
either one leads to ~35% decrease in predicted life.  This high sensitivity is directly 
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related the high sensitivity of da/dN to ∆K, which is a material property.  On the other 
hand, factors having a relatively small impact on predicted life are critical crack length 
and large β-values that occur when a crack approaches a free surface. 
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